The Multi-Mission Maximum Likelihood framework Logo
  • Installation
  • Intro
  • Configuration
  • Logging and Verbosity
  • Notes for XSPEC Users
  • Minimization
  • Bayesian Posterior Sampling
  • Bayesian Sampler Examples
  • Plugins
  • Modeling
  • Frequently Asked Questions
  • API
  • threeML
  • Release Notes

Features and examples:

  • Analysis Results
  • Random Variates
  • Point source plotting basics
  • Constructing plugins from TimeSeries
  • Analyzing GRB 080916C
  • Fitting XMM-Newton data with the APEC model
  • Example joint fit between GBM and Swift BAT
  • Joint fitting XRT and GBM data with XSPEC models
  • Point Source Fluxes and Multiple Sources
  • Fermi-LAT via FermiPyLike
  • Time-energy fit
  • Generating Synthetic Data
  • Goodness of Fit and Model Comparison
The Multi-Mission Maximum Likelihood framework
  • »
  • API »
  • threeML package »
  • threeML.io package »
  • threeML.io.plotting package
  • Edit on GitHub

threeML.io.plotting package¶

Submodules¶

  • threeML.io.plotting.cmap_cycle module
  • threeML.io.plotting.data_residual_plot module
  • threeML.io.plotting.get_style module
  • threeML.io.plotting.light_curve_plots module
  • threeML.io.plotting.model_plot module
  • threeML.io.plotting.post_process_data_plots module
  • threeML.io.plotting.step_plot module

Module contents¶

Next Previous

© Copyright 2017--2021, G.Vianello, J. M. Burgess, N. Di Lalla, N. Omodei, H. Fleischhack. Revision 60c7a9de.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: stable
Versions
latest
stable
v2.2.4
v2.2.3
v2.2.2
v2.2.1
v2.2.0
v2.1.3
v2.1.2
v2.1.1
v2.1.0
v2.0.3
v2.0.2
v2.0.1
v2.0.0
v1.2.0
v1.1.1
v1.0.9
Downloads
On Read the Docs
Project Home
Builds