Analyzing GRB 080916C

Alt text (NASA/Swift/Cruz deWilde)

To demonstrate the capabilities and features of 3ML in, we will go through a time-integrated and time-resolved analysis. This example serves as a standard way to analyze Fermi-GBM data with 3ML as well as a template for how you can design your instrument’s analysis pipeline with 3ML if you have similar data.

3ML provides utilities to reduce time series data to plugins in a correct and statistically justified way (e.g., background fitting of Poisson data is done with a Poisson likelihood). The approach is generic and can be extended. For more details, see the time series documentation.

[1]:
import warnings

warnings.simplefilter("ignore")
[2]:
%%capture
import matplotlib.pyplot as plt
import numpy as np

np.seterr(all="ignore")


from threeML import *
from threeML.io.package_data import get_path_of_data_file
[3]:

silence_warnings() %matplotlib inline from jupyterthemes import jtplot jtplot.style(context="talk", fscale=1, ticks=True, grid=False) set_threeML_style()

Examining the catalog

As with Swift and Fermi-LAT, 3ML provides a simple interface to the on-line Fermi-GBM catalog. Let’s get the information for GRB 080916C.

[4]:
gbm_catalog = FermiGBMBurstCatalog()
gbm_catalog.query_sources("GRB080916009")
18:27:17 INFO      The cache for fermigbrst does not yet exist. We will try to    get_heasarc_table_as_pandas.py:64
                  build it                                                                                         
                                                                                                                   
         INFO      Building cache for fermigbrst                                 get_heasarc_table_as_pandas.py:112
[4]:
Table length=1
nameradectrigger_timet90
objectfloat64float64float64float64
GRB080916009119.800-56.60054725.008861362.977

To aid in quickly replicating the catalog analysis, and thanks to the tireless efforts of the Fermi-GBM team, we have added the ability to extract the analysis parameters from the catalog as well as build an astromodels model with the best fit parameters baked in. Using this information, one can quickly run through the catalog an replicate the entire analysis with a script. Let’s give it a try.

[5]:
grb_info = gbm_catalog.get_detector_information()["GRB080916009"]

gbm_detectors = grb_info["detectors"]
source_interval = grb_info["source"]["fluence"]
background_interval = grb_info["background"]["full"]
best_fit_model = grb_info["best fit model"]["fluence"]
model = gbm_catalog.get_model(best_fit_model, "fluence")["GRB080916009"]
[6]:
model
[6]:
Model summary:

N
Point sources 1
Extended sources 0
Particle sources 0


Free parameters (5):

value min_value max_value unit
GRB080916009.spectrum.main.SmoothlyBrokenPowerLaw.K 0.012255 0.0 None keV-1 s-1 cm-2
GRB080916009.spectrum.main.SmoothlyBrokenPowerLaw.alpha -1.130424 -1.5 2.0
GRB080916009.spectrum.main.SmoothlyBrokenPowerLaw.break_energy 309.2031 10.0 None keV
GRB080916009.spectrum.main.SmoothlyBrokenPowerLaw.break_scale 0.3 0.0 10.0
GRB080916009.spectrum.main.SmoothlyBrokenPowerLaw.beta -2.096931 -5.0 -1.6


Fixed parameters (3):
(abridged. Use complete=True to see all fixed parameters)


Properties (0):

(none)


Linked parameters (0):

(none)

Independent variables:

(none)

Linked functions (0):

(none)

Downloading the data

We provide a simple interface to download the Fermi-GBM data. Using the information from the catalog that we have extracted, we can download just the data from the detectors that were used for the catalog analysis. This will download the CSPEC, TTE and instrument response files from the on-line database.

[7]:
dload = download_GBM_trigger_data("bn080916009", detectors=gbm_detectors)

Let’s first examine the catalog fluence fit. Using the TimeSeriesBuilder, we can fit the background, set the source interval, and create a 3ML plugin for the analysis. We will loop through the detectors, set their appropriate channel selections, and ensure there are enough counts in each bin to make the PGStat profile likelihood valid.

  • First we use the CSPEC data to fit the background using the background selections. We use CSPEC because it has a longer duration for fitting the background.

  • The background is saved to an HDF5 file that stores the polynomial coefficients and selections which we can read in to the TTE file later.

  • The light curve is plotted.

  • The source selection from the catalog is set and DispersionSpectrumLike plugin is created.

  • The plugin has the standard GBM channel selections for spectral analysis set.

[8]:
fluence_plugins = []
time_series = {}
for det in gbm_detectors:
    ts_cspec = TimeSeriesBuilder.from_gbm_cspec_or_ctime(
        det, cspec_or_ctime_file=dload[det]["cspec"], rsp_file=dload[det]["rsp"]
    )

    ts_cspec.set_background_interval(*background_interval.split(","))
    ts_cspec.save_background(f"{det}_bkg.h5", overwrite=True)

    ts_tte = TimeSeriesBuilder.from_gbm_tte(
        det,
        tte_file=dload[det]["tte"],
        rsp_file=dload[det]["rsp"],
        restore_background=f"{det}_bkg.h5",
    )

    time_series[det] = ts_tte

    ts_tte.set_active_time_interval(source_interval)

    ts_tte.view_lightcurve(-40, 100)

    fluence_plugin = ts_tte.to_spectrumlike()

    if det.startswith("b"):
        fluence_plugin.set_active_measurements("250-30000")

    else:
        fluence_plugin.set_active_measurements("9-900")

    fluence_plugin.rebin_on_background(1.0)

    fluence_plugins.append(fluence_plugin)
18:28:17 INFO      Auto-determined polynomial order: 0                                binned_spectrum_series.py:389
18:28:26 INFO      None 0-order polynomial fit with the mle method                               time_series.py:458
         INFO      Saved fitted background to n3_bkg.h5                                         time_series.py:1064
         INFO      Saved background to n3_bkg.h5                                         time_series_builder.py:471
18:28:27 INFO      Successfully restored fit from n3_bkg.h5                              time_series_builder.py:171
         INFO      Interval set to 1.28-64.257 for n3                                    time_series_builder.py:290
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: poisson                                                       SpectrumLike.py:491
         INFO      - background: gaussian                                                       SpectrumLike.py:492
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
18:28:30 INFO      Now using 120 bins                                                          SpectrumLike.py:1739
18:28:32 INFO      Auto-determined polynomial order: 1                                binned_spectrum_series.py:389
18:28:46 INFO      None 1-order polynomial fit with the mle method                               time_series.py:458
         INFO      Saved fitted background to n4_bkg.h5                                         time_series.py:1064
         INFO      Saved background to n4_bkg.h5                                         time_series_builder.py:471
         INFO      Successfully restored fit from n4_bkg.h5                              time_series_builder.py:171
         INFO      Interval set to 1.28-64.257 for n4                                    time_series_builder.py:290
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: poisson                                                       SpectrumLike.py:491
         INFO      - background: gaussian                                                       SpectrumLike.py:492
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
18:28:49 INFO      Auto-determined polynomial order: 1                                binned_spectrum_series.py:389
18:29:02 INFO      None 1-order polynomial fit with the mle method                               time_series.py:458
         INFO      Saved fitted background to b0_bkg.h5                                         time_series.py:1064
         INFO      Saved background to b0_bkg.h5                                         time_series_builder.py:471
18:29:03 INFO      Successfully restored fit from b0_bkg.h5                              time_series_builder.py:171
         INFO      Interval set to 1.28-64.257 for b0                                    time_series_builder.py:290
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: poisson                                                       SpectrumLike.py:491
         INFO      - background: gaussian                                                       SpectrumLike.py:492
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
../_images/notebooks_grb080916C_12_42.png
../_images/notebooks_grb080916C_12_43.png
../_images/notebooks_grb080916C_12_44.png

Setting up the fit

Let’s see if we can reproduce the results from the catalog.

Set priors for the model

We will fit the spectrum using Bayesian analysis, so we must set priors on the model parameters.

[9]:
model.GRB080916009.spectrum.main.shape.alpha.prior = Truncated_gaussian(
    lower_bound=-1.5, upper_bound=1, mu=-1, sigma=0.5
)
model.GRB080916009.spectrum.main.shape.beta.prior = Truncated_gaussian(
    lower_bound=-5, upper_bound=-1.6, mu=-2.25, sigma=0.5
)
model.GRB080916009.spectrum.main.shape.break_energy.prior = Log_normal(mu=2, sigma=1)
model.GRB080916009.spectrum.main.shape.break_energy.bounds = (None, None)
model.GRB080916009.spectrum.main.shape.K.prior = Log_uniform_prior(
    lower_bound=1e-3, upper_bound=1e1
)
model.GRB080916009.spectrum.main.shape.break_scale.prior = Log_uniform_prior(
    lower_bound=1e-4, upper_bound=10
)

Clone the model and setup the Bayesian analysis class

Next, we clone the model we built from the catalog so that we can look at the results later and fit the cloned model. We pass this model and the DataList of the plugins to a BayesianAnalysis class and set the sampler to MultiNest.

[10]:
new_model = clone_model(model)

bayes = BayesianAnalysis(new_model, DataList(*fluence_plugins))

# share spectrum gives a linear speed up when
# spectrumlike plugins have the same RSP input energies
bayes.set_sampler("multinest", share_spectrum=True)
18:29:04 INFO      sampler set to multinest                                                bayesian_analysis.py:202

Examine at the catalog fitted model

We can quickly examine how well the catalog fit matches the data. There appears to be a discrepancy between the data and the model! Let’s refit to see if we can fix it.

[11]:
fig = display_spectrum_model_counts(bayes, min_rate=20, step=False)
../_images/notebooks_grb080916C_18_0.png

Run the sampler

We let MultiNest condition the model on the data

[12]:
bayes.sampler.setup(n_live_points=400)
bayes.sample()
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  400
 dimensionality =    5
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -3101.1815714369950      +/-  0.22451188311220827
 Total Likelihood Evaluations:        23342
 Sampling finished. Exiting MultiNest

18:29:19 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
GRB080916009...K (1.470 -0.020 +0.018) x 10^-2 1 / (cm2 keV s)
GRB080916009...alpha -1.101 +0.007 +0.05
GRB080916009...break_energy (1.89 +0.13 +0.7) x 10^2 keV
GRB080916009...break_scale (0.0 +1.7 +3.4) x 10^-1
GRB080916009...beta -1.97 -0.21 -0.04
Values of -log(posterior) at the minimum:

-log(posterior)
b0 -1049.484738
n3 -1019.875618
n4 -1009.886554
total -3079.246910
Values of statistical measures:

statistical measures
AIC 6168.664275
BIC 6187.896486
DIC 6179.580233
PDIC 4.230147
log(Z) -1346.826044

Now our model seems to match much better with the data!

[13]:
bayes.restore_median_fit()
fig = display_spectrum_model_counts(bayes, min_rate=20)
         INFO      fit restored to median of posterior                                          sampler_base.py:164
../_images/notebooks_grb080916C_22_1.png

But how different are we from the catalog model? Let’s plot our fit along with the catalog model. Luckily, 3ML can handle all the units for is

[14]:
conversion = u.Unit("keV2/(cm2 s keV)").to("erg2/(cm2 s keV)")
energy_grid = np.logspace(1, 4, 100) * u.keV
vFv = (energy_grid**2 * model.get_point_source_fluxes(0, energy_grid)).to(
    "erg2/(cm2 s keV)"
)
[15]:
fig = plot_spectra(bayes.results, flux_unit="erg2/(cm2 s keV)")
ax = fig.get_axes()[0]
_ = ax.loglog(energy_grid, vFv, color="blue", label="catalog model")
../_images/notebooks_grb080916C_25_2.png

Time Resolved Analysis

Now that we have examined fluence fit, we can move to performing a time-resolved analysis.

Selecting a temporal binning

We first get the brightest NaI detector and create time bins via the Bayesian blocks algorithm. We can use the fitted background to make sure that our intervals are chosen in an unbiased way.

[16]:
n3 = time_series["n3"]
[17]:
n3.create_time_bins(0, 60, method="bayesblocks", use_background=True, p0=0.2)
18:31:09 INFO      Created 15 bins via bayesblocks                                       time_series_builder.py:708

Sometimes, glitches in the GBM data cause spikes in the data that the Bayesian blocks algorithm detects as fast changes in the count rate. We will have to remove those intervals manually.

Note: In the future, 3ML will provide an automated method to remove these unwanted spikes.

[18]:
fig = n3.view_lightcurve(use_binner=True)
../_images/notebooks_grb080916C_30_0.png
[19]:
bad_bins = []
for i, w in enumerate(n3.bins.widths):
    if w < 5e-2:
        bad_bins.append(i)


edges = [n3.bins.starts[0]]

for i, b in enumerate(n3.bins):
    if i not in bad_bins:
        edges.append(b.stop)

starts = edges[:-1]
stops = edges[1:]


n3.create_time_bins(starts, stops, method="custom")
         INFO      Created 12 bins via custom                                            time_series_builder.py:708

Now our light curve looks much more acceptable.

[20]:
fig = n3.view_lightcurve(use_binner=True)
../_images/notebooks_grb080916C_33_0.png

The time series objects can read time bins from each other, so we will map these time bins onto the other detectors’ time series and create a list of time plugins for each detector and each time bin created above.

[21]:
time_resolved_plugins = {}

for k, v in time_series.items():
    v.read_bins(n3)
    time_resolved_plugins[k] = v.to_spectrumlike(from_bins=True)
18:31:10 INFO      Created 12 bins via custom                                            time_series_builder.py:708
         INFO      Interval set to 1.28-64.257 for n3                                    time_series_builder.py:290
         INFO      Created 12 bins via custom                                            time_series_builder.py:708
18:31:11 INFO      Interval set to 1.28-64.257 for n4                                    time_series_builder.py:290
         INFO      Created 12 bins via custom                                            time_series_builder.py:708
         INFO      Interval set to 1.28-64.257 for b0                                    time_series_builder.py:290

Setting up the model

For the time-resolved analysis, we will fit the classic Band function to the data. We will set some principled priors.

[22]:
band = Band()
band.alpha.prior = Truncated_gaussian(lower_bound=-1.5, upper_bound=1, mu=-1, sigma=0.5)
band.beta.prior = Truncated_gaussian(lower_bound=-5, upper_bound=-1.6, mu=-2, sigma=0.5)
band.xp.prior = Log_normal(mu=2, sigma=1)
band.xp.bounds = (None, None)
band.K.prior = Log_uniform_prior(lower_bound=1e-10, upper_bound=1e3)
ps = PointSource("grb", 0, 0, spectral_shape=band)
band_model = Model(ps)

Perform the fits

One way to perform Bayesian spectral fits to all the intervals is to loop through each one. There can are many ways to do this, so find an analysis pattern that works for you.

[23]:
models = []
results = []
analysis = []
for interval in range(12):
    # clone the model above so that we have a separate model
    # for each fit

    this_model = clone_model(band_model)

    # for each detector set up the plugin
    # for this time interval

    this_data_list = []
    for k, v in time_resolved_plugins.items():
        pi = v[interval]

        if k.startswith("b"):
            pi.set_active_measurements("250-30000")
        else:
            pi.set_active_measurements("9-900")

        pi.rebin_on_background(1.0)

        this_data_list.append(pi)

    # create a data list

    dlist = DataList(*this_data_list)

    # set up the sampler and fit

    bayes = BayesianAnalysis(this_model, dlist)

    # get some speed with share spectrum
    bayes.set_sampler("multinest", share_spectrum=True)
    bayes.sampler.setup(n_live_points=500)
    bayes.sample()

    # at this stage we coudl also
    # save the analysis result to
    # disk but we will simply hold
    # onto them in memory

    analysis.append(bayes)
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
18:31:12 INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 107 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -798.29555087660117      +/-  0.20044967195006688
 Total Likelihood Evaluations:        17077
 Sampling finished. Exiting MultiNest

18:31:24 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (3.94 +0.16 +1.4) x 10^-2 1 / (cm2 keV s)
grb.spectrum.main.Band.alpha (-5.75 -0.08 +1.5) x 10^-1
grb.spectrum.main.Band.xp (2.54 -0.8 -0.09) x 10^2 keV
grb.spectrum.main.Band.beta -1.730 -0.020 +0.05
Values of -log(posterior) at the minimum:

-log(posterior)
b0_interval0 -287.620175
n3_interval0 -250.365285
n4_interval0 -267.496239
total -805.481699
Values of statistical measures:

statistical measures
AIC 1619.076712
BIC 1634.485529
DIC 1568.987918
PDIC -6.908927
log(Z) -346.695353
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -1955.1611788336586      +/-  0.22154761409587490
 Total Likelihood Evaluations:        23879
 Sampling finished. Exiting MultiNest

18:31:39 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (4.58 -0.05 +0.15) x 10^-2 1 / (cm2 keV s)
grb.spectrum.main.Band.alpha (-7.96 -0.04 +0.35) x 10^-1
grb.spectrum.main.Band.xp (4.757 -0.4 -0.017) x 10^2 keV
grb.spectrum.main.Band.beta -1.899 +0.007 +0.04
Values of -log(posterior) at the minimum:

-log(posterior)
b0_interval1 -680.630055
n3_interval1 -642.314053
n4_interval1 -643.181391
total -1966.125499
Values of statistical measures:

statistical measures
AIC 3940.364313
BIC 3955.773131
DIC 3888.785232
PDIC 2.282629
log(Z) -849.115711
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 115 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -906.98297144222317      +/-  0.19918355563115239
 Total Likelihood Evaluations:        20169
 Sampling finished. Exiting MultiNest

18:31:51 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.47 -0.18 +0.19) x 10^-2 1 / (cm2 keV s)
grb.spectrum.main.Band.alpha -1.07 -0.05 +0.06
grb.spectrum.main.Band.xp (6.6 -1.2 +2.6) x 10^2 keV
grb.spectrum.main.Band.beta -2.07 -0.5 -0.06
Values of -log(posterior) at the minimum:

-log(posterior)
b0_interval2 -325.084737
n3_interval2 -289.560256
n4_interval2 -312.971178
total -927.616171
Values of statistical measures:

statistical measures
AIC 1863.345656
BIC 1878.754474
DIC 1805.623728
PDIC 2.045628
log(Z) -393.897700
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 109 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -789.55896640591800      +/-  0.18039927414433127
 Total Likelihood Evaluations:        17406
 Sampling finished. Exiting MultiNest

18:32:02 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.88 -0.13 +0.6) x 10^-2 1 / (cm2 keV s)
grb.spectrum.main.Band.alpha (-9.2 -0.4 +1.2) x 10^-1
grb.spectrum.main.Band.xp (3.45 -0.9 +0.32) x 10^2 keV
grb.spectrum.main.Band.beta -2.24 +0.05 +0.34
Values of -log(posterior) at the minimum:

-log(posterior)
b0_interval3 -298.424363
n3_interval3 -242.521820
n4_interval3 -262.648946
total -803.595129
Values of statistical measures:

statistical measures
AIC 1615.303573
BIC 1630.712390
DIC 1569.549069
PDIC 2.280395
log(Z) -342.901102
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -2277.7754225455324      +/-  0.21456724636098054
 Total Likelihood Evaluations:        21397
 Sampling finished. Exiting MultiNest

18:32:17 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.221 +0.024 +0.17) x 10^-2 1 / (cm2 keV s)
grb.spectrum.main.Band.alpha (-9.17 +0.12 +0.4) x 10^-1
grb.spectrum.main.Band.xp (3.58 -0.4 -0.07) x 10^2 keV
grb.spectrum.main.Band.beta -2.0725 -0.0008 +0.05
Values of -log(posterior) at the minimum:

-log(posterior)
b0_interval4 -779.066984
n3_interval4 -759.511895
n4_interval4 -745.592853
total -2284.171732
Values of statistical measures:

statistical measures
AIC 4576.456778
BIC 4591.865595
DIC 4531.489614
PDIC 1.462624
log(Z) -989.225297
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -1573.0018489753970      +/-  0.19128717316060656
 Total Likelihood Evaluations:        19841
 Sampling finished. Exiting MultiNest

18:32:29 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.77 -0.18 +0.19) x 10^-2 1 / (cm2 keV s)
grb.spectrum.main.Band.alpha (-9.2 +/- 0.5) x 10^-1
grb.spectrum.main.Band.xp (4.3 -0.5 +0.7) x 10^2 keV
grb.spectrum.main.Band.beta -2.13 -0.27 +0.09
Values of -log(posterior) at the minimum:

-log(posterior)
b0_interval5 -536.973601
n3_interval5 -523.424054
n4_interval5 -527.802826
total -1588.200481
Values of statistical measures:

statistical measures
AIC 3184.514276
BIC 3199.923093
DIC 3136.622932
PDIC 3.278837
log(Z) -683.146023
18:32:30 INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -1754.7784033182991      +/-  0.19022838832320757
 Total Likelihood Evaluations:        20483
 Sampling finished. Exiting MultiNest

18:32:41 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (1.95 -0.12 +0.13) x 10^-2 1 / (cm2 keV s)
grb.spectrum.main.Band.alpha -1.02 +/- 0.05
grb.spectrum.main.Band.xp (4.5 -0.5 +0.8) x 10^2 keV
grb.spectrum.main.Band.beta -2.38 -0.4 +0.20
Values of -log(posterior) at the minimum:

-log(posterior)
b0_interval6 -609.551716
n3_interval6 -584.378753
n4_interval6 -576.910474
total -1770.840943
Values of statistical measures:

statistical measures
AIC 3549.795201
BIC 3565.204018
DIC 3501.487742
PDIC 3.472375
log(Z) -762.090578
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -1939.4087966628908      +/-  0.19192557927356738
 Total Likelihood Evaluations:        19390
 Sampling finished. Exiting MultiNest

18:32:53 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (1.69 -0.10 +0.09) x 10^-2 1 / (cm2 keV s)
grb.spectrum.main.Band.alpha -1.03 -0.05 +0.04
grb.spectrum.main.Band.xp (4.2 -0.4 +0.8) x 10^2 keV
grb.spectrum.main.Band.beta -2.20 -0.4 +0.09
Values of -log(posterior) at the minimum:

-log(posterior)
b0_interval7 -662.239555
n3_interval7 -640.755782
n4_interval7 -650.252553
total -1953.247890
Values of statistical measures:

statistical measures
AIC 3914.609094
BIC 3930.017912
DIC 3868.579115
PDIC 3.284519
log(Z) -842.274539
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -2054.2333786286999      +/-  0.18870230498374302
 Total Likelihood Evaluations:        19698
 Sampling finished. Exiting MultiNest

18:33:05 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (1.53 -0.12 +0.15) x 10^-2 1 / (cm2 keV s)
grb.spectrum.main.Band.alpha (-8.5 -0.6 +0.7) x 10^-1
grb.spectrum.main.Band.xp (3.7 -0.5 +0.6) x 10^2 keV
grb.spectrum.main.Band.beta -2.25 -0.4 +0.11
Values of -log(posterior) at the minimum:

-log(posterior)
b0_interval8 -702.130149
n3_interval8 -698.306458
n4_interval8 -666.220813
total -2066.657420
Values of statistical measures:

statistical measures
AIC 4141.428154
BIC 4156.836972
DIC 4097.887628
PDIC 3.258087
log(Z) -892.142221
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -1878.4761492548209      +/-  0.14379233015635132
 Total Likelihood Evaluations:        13146
 Sampling finished. Exiting MultiNest

18:33:12 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (1.1 -0.4 +1.1) x 10^-2 1 / (cm2 keV s)
grb.spectrum.main.Band.alpha (-8.7 -1.8 +3.1) x 10^-1
grb.spectrum.main.Band.xp (1.09 -0.35 +0.6) x 10^2 keV
grb.spectrum.main.Band.beta -1.86 -0.34 +0.12
Values of -log(posterior) at the minimum:

-log(posterior)
b0_interval9 -648.227996
n3_interval9 -616.933514
n4_interval9 -616.242789
total -1881.404299
Values of statistical measures:

statistical measures
AIC 3770.921912
BIC 3786.330730
DIC 3708.004822
PDIC -39.093363
log(Z) -815.811826
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -1321.8603457225206      +/-  0.16573941052005259
 Total Likelihood Evaluations:        15820
 Sampling finished. Exiting MultiNest

18:33:22 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.0 -0.4 +0.5) x 10^-2 1 / (cm2 keV s)
grb.spectrum.main.Band.alpha (-7.5 -1.4 +1.3) x 10^-1
grb.spectrum.main.Band.xp (2.2 -0.4 +0.7) x 10^2 keV
grb.spectrum.main.Band.beta -1.95 -0.4 +0.10
Values of -log(posterior) at the minimum:

-log(posterior)
b0_interval10 -460.873861
n3_interval10 -437.605877
n4_interval10 -433.305854
total -1331.785591
Values of statistical measures:

statistical measures
AIC 2671.684497
BIC 2687.093314
DIC 2634.463005
PDIC 0.754472
log(Z) -574.076654
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -812.33480621563581      +/-  0.15043167123748710
 Total Likelihood Evaluations:        11858
 Sampling finished. Exiting MultiNest

18:33:30 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.6 -0.6 +1.2) x 10^-2 1 / (cm2 keV s)
grb.spectrum.main.Band.alpha (-5.2 -1.5 +2.2) x 10^-1
grb.spectrum.main.Band.xp (1.31 -0.23 +0.27) x 10^2 keV
grb.spectrum.main.Band.beta -2.13 -0.4 +0.18
Values of -log(posterior) at the minimum:

-log(posterior)
b0_interval11 -292.316518
n3_interval11 -272.248504
n4_interval11 -255.922670
total -820.487692
Values of statistical measures:

statistical measures
AIC 1649.088698
BIC 1664.497516
DIC 1618.964716
PDIC 2.227909
log(Z) -352.792524

Examine the fits

Now we can look at the fits in count space to make sure they are ok.

[24]:
for a in analysis:
    a.restore_median_fit()
    _ = display_spectrum_model_counts(a, min_rate=[20, 20, 20], step=False)
         INFO      fit restored to median of posterior                                          sampler_base.py:164
         INFO      fit restored to median of posterior                                          sampler_base.py:164
18:33:31 INFO      fit restored to median of posterior                                          sampler_base.py:164
18:33:32 INFO      fit restored to median of posterior                                          sampler_base.py:164
18:33:33 INFO      fit restored to median of posterior                                          sampler_base.py:164
         INFO      fit restored to median of posterior                                          sampler_base.py:164
18:33:34 INFO      fit restored to median of posterior                                          sampler_base.py:164
18:33:35 INFO      fit restored to median of posterior                                          sampler_base.py:164
         INFO      fit restored to median of posterior                                          sampler_base.py:164
18:33:36 INFO      fit restored to median of posterior                                          sampler_base.py:164
18:33:37 INFO      fit restored to median of posterior                                          sampler_base.py:164
         INFO      fit restored to median of posterior                                          sampler_base.py:164
../_images/notebooks_grb080916C_41_12.png
../_images/notebooks_grb080916C_41_13.png
../_images/notebooks_grb080916C_41_14.png
../_images/notebooks_grb080916C_41_15.png
../_images/notebooks_grb080916C_41_16.png
../_images/notebooks_grb080916C_41_17.png
../_images/notebooks_grb080916C_41_18.png
../_images/notebooks_grb080916C_41_19.png
../_images/notebooks_grb080916C_41_20.png
../_images/notebooks_grb080916C_41_21.png
../_images/notebooks_grb080916C_41_22.png
../_images/notebooks_grb080916C_41_23.png

Finally, we can plot the models together to see how the spectra evolve with time.

[25]:
fig = plot_spectra(
    *[a.results for a in analysis[::1]],
    flux_unit="erg2/(cm2 s keV)",
    fit_cmap="viridis",
    contour_cmap="viridis",
    contour_style_kwargs=dict(alpha=0.1),
)
../_images/notebooks_grb080916C_43_13.png

This example can serve as a template for performing analysis on GBM data. However, as 3ML provides an abstract interface and modular building blocks, similar analysis pipelines can be built for any time series data.