Generating Synthetic Data

In data analysis, it is important that we have the ability to test our assumptions. One powerful tool to enable these tests is simulation. In 3ML, we have several ways to generate synthetic data sets both from models and from fits.

Synthetic data from spectra

Genertating data from models

Most of the current plugins support the ability to generate synthetic data directly from a model. This can be very useful to assertain the detectability of a source/component/line or simply to see how models look once they are transformed into data. Below we will demonstrate how different plugins transform a model into synthetic data.

XYLike

In many of the examples, the basic XYLike plugin has been used to generate synthetic data. Here, we will revisit the plugin for completeness.

[1]:
import warnings

warnings.simplefilter("ignore")
[2]:
import matplotlib.pyplot as plt
import numpy as np

np.seterr(all="ignore")
from threeML import *
from threeML.io.package_data import get_path_of_data_file
21:03:27 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48
                  available                                                                                        
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69
                  will not be available.                                                                           
21:03:28 WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:33
                  available                                                                                        
[3]:
from jupyterthemes import jtplot

%matplotlib inline
jtplot.style(context="talk", fscale=1, ticks=True, grid=False)
set_threeML_style()
silence_warnings()
[4]:
# Select an astromodels function to from which to simualte
generating_function = Powerlaw(K=1.0, index=-2, piv=10.0)

# set up the x grig points
x_points = np.logspace(0, 2, 50)

# call the from_function classmethod
xyl_generator = XYLike.from_function(
    "sim_data",
    function=generating_function,
    x=x_points,
    yerr=0.3 * generating_function(x_points),
)


fig = xyl_generator.plot(x_scale="log", y_scale="log")
21:03:29 INFO      Using Gaussian statistic (equivalent to chi^2) with the provided errors.            XYLike.py:93
21:03:31 INFO      Using Gaussian statistic (equivalent to chi^2) with the provided errors.            XYLike.py:93
../_images/notebooks_synthetic_spectra_7_2.png

SpectrumLike

Generating synthetic spectra from SpectrumLike (non-energy dispersed count spectra) can take many forms with different inputs.

First, let’s set the energy bins we will use for all generated spectra

[5]:

energies = np.logspace(0, 2, 51) # create the low and high energy bin edges low_edge = energies[:-1] high_edge = energies[1:]

Now, let’s use a blackbody for the source spectrum.

[6]:
# get a BPL source function
source_function = Blackbody(K=1, kT=5.0)
Poisson spectrum with no background
[7]:
spectrum_generator = SpectrumLike.from_function(
    "fake", source_function=source_function, energy_min=low_edge, energy_max=high_edge
)


fig = spectrum_generator.view_count_spectrum()
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: poisson                                                       SpectrumLike.py:491
         INFO      - background: None                                                           SpectrumLike.py:492
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: poisson                                                       SpectrumLike.py:491
         INFO      - background: None                                                           SpectrumLike.py:492
../_images/notebooks_synthetic_spectra_13_6.png
Gaussian spectrum with no background
[8]:
spectrum_generator = SpectrumLike.from_function(
    "fake",
    source_function=source_function,
    source_errors=0.5 * source_function(low_edge),
    energy_min=low_edge,
    energy_max=high_edge,
)


fig = spectrum_generator.view_count_spectrum()
21:03:32 INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: gaussian                                                      SpectrumLike.py:491
         INFO      - background: None                                                           SpectrumLike.py:492
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: gaussian                                                      SpectrumLike.py:491
         INFO      - background: None                                                           SpectrumLike.py:492
../_images/notebooks_synthetic_spectra_15_6.png
Poisson spectrum with Poisson Background
[9]:

# power law background function background_function = Powerlaw(K=0.7, index=-1.5, piv=10.0) spectrum_generator = SpectrumLike.from_function( "fake", source_function=source_function, background_function=background_function, energy_min=low_edge, energy_max=high_edge, ) fig = spectrum_generator.view_count_spectrum()
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: poisson                                                       SpectrumLike.py:491
21:03:33 INFO      - background: None                                                           SpectrumLike.py:492
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: poisson                                                       SpectrumLike.py:491
         INFO      - background: None                                                           SpectrumLike.py:492
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: poisson                                                       SpectrumLike.py:491
         INFO      - background: poisson                                                        SpectrumLike.py:492
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: poisson                                                       SpectrumLike.py:491
         INFO      - background: poisson                                                        SpectrumLike.py:492
../_images/notebooks_synthetic_spectra_17_12.png
Poisson spectrum with Gaussian background
[10]:

spectrum_generator = SpectrumLike.from_function( "fake", source_function=source_function, background_function=background_function, background_errors=0.1 * background_function(low_edge), energy_min=low_edge, energy_max=high_edge, ) fig = spectrum_generator.view_count_spectrum()
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: gaussian                                                      SpectrumLike.py:491
         INFO      - background: None                                                           SpectrumLike.py:492
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: gaussian                                                      SpectrumLike.py:491
         INFO      - background: None                                                           SpectrumLike.py:492
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: poisson                                                       SpectrumLike.py:491
         INFO      - background: gaussian                                                       SpectrumLike.py:492
21:03:34 INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: poisson                                                       SpectrumLike.py:491
         INFO      - background: gaussian                                                       SpectrumLike.py:492
../_images/notebooks_synthetic_spectra_19_12.png

DispersionSpectrumLike

DispersionSpectrumLike behaves in the same fashion as SpectrumLike except that a 3ML Instrument response must be set which means that the energy bins do not need to be specified as they are derived from the response

Let’s grab a response from an instrument.

[11]:
from threeML.io.package_data import get_path_of_data_file
from threeML.utils.OGIP.response import OGIPResponse

# we will use a demo response
response = OGIPResponse(get_path_of_data_file("datasets/ogip_powerlaw.rsp"))
[12]:
# rescale the functions for the response
source_function = Blackbody(K=1e-7, kT=500.0)
background_function = Powerlaw(K=1, index=-1.5, piv=1.0e3)
spectrum_generator = DispersionSpectrumLike.from_function(
    "fake",
    source_function=source_function,
    background_function=background_function,
    response=response,
)
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: poisson                                                       SpectrumLike.py:491
         INFO      - background: None                                                           SpectrumLike.py:492
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: poisson                                                       SpectrumLike.py:491
         INFO      - background: None                                                           SpectrumLike.py:492
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: poisson                                                       SpectrumLike.py:491
         INFO      - background: poisson                                                        SpectrumLike.py:492
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: poisson                                                       SpectrumLike.py:491
         INFO      - background: poisson                                                        SpectrumLike.py:492
[13]:
fig = spectrum_generator.view_count_spectrum()
../_images/notebooks_synthetic_spectra_23_0.png

Generating spectra from fitted models

When performing goodness of fit tests, likelihood ratio tests (both automatic in 3ML) or posterior predictive checks, we need to generate synthetic data from our fitted models. Therefore, we proved methods to do this for most current plugins.

XYLike

Let’s load some example, generic XY data and fit it with a power law.

[14]:
data_path = get_path_of_data_file("datasets/xy_powerlaw.txt")


xyl = XYLike.from_text_file("xyl", data_path)

fit_function = Powerlaw()

xyl.fit(fit_function)

fig = xyl.plot(x_scale="log", y_scale="log")
21:03:35 INFO      Using Gaussian statistic (equivalent to chi^2) with the provided errors.            XYLike.py:93
         INFO      set the minimizer to minuit                                             joint_likelihood.py:1046
         INFO      set the minimizer to MINUIT                                             joint_likelihood.py:1063
Best fit values:

result unit
parameter
source.spectrum.main.Powerlaw.K (8.8 +/- 0.8) x 10^-1 1 / (keV s cm2)
source.spectrum.main.Powerlaw.index -1.974 +/- 0.033
Correlation matrix:

1.00-0.87
-0.871.00
Values of -log(likelihood) at the minimum:

-log(likelihood)
xyl 22.762756
total 22.762756
Values of statistical measures:

statistical measures
AIC 49.780832
BIC 53.349559
../_images/notebooks_synthetic_spectra_26_11.png

Once our fit has been finished, we can produce simulated data sets from those model parameters.

[15]:
synthetic_xyl = xyl.get_simulated_dataset()

fig = synthetic_xyl.plot(x_scale="log", y_scale="log")
21:03:36 INFO      Using Gaussian statistic (equivalent to chi^2) with the provided errors.            XYLike.py:93
../_images/notebooks_synthetic_spectra_28_1.png

SpectrumLike and DispersionSpectrumLike (OGIPLike)

Both spectrum plugins work in the same way when generating data from a fit. They both keep track of the statistical properties of the likelihoods in the plugin so that the simulated datasets have the appropriate statistical properties. Additionally, background, responsses, etc. are simulated and/or kept track of as well.

Let’s fit an example energy dispersed spectrum.

[16]:
ogip_data = OGIPLike(
    "ogip",
    observation=get_path_of_data_file("datasets/ogip_powerlaw.pha"),
    background=get_path_of_data_file("datasets/ogip_powerlaw.bak"),
    response=get_path_of_data_file("datasets/ogip_powerlaw.rsp"),
)

ogip_data.view_count_spectrum()
# define the function
fit_function = Cutoff_powerlaw(K=1e-3, xc=1000, index=-0.66)

# define the point source
point_source = PointSource("ps", 0, 0, spectral_shape=fit_function)

# define the model
model = Model(point_source)

ogip_data.set_model(model)
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: poisson                                                       SpectrumLike.py:491
         INFO      - background: poisson                                                        SpectrumLike.py:492
../_images/notebooks_synthetic_spectra_30_3.png

Now we can now generate synthetic datasets from the fitted model. This will include the background sampled properly from the profile likelihood. The instrument response is automatically passed to the new plugin.

[17]:
synthetic_ogip = ogip_data.get_simulated_dataset()

fig = synthetic_ogip.view_count_spectrum()
21:03:37 INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: poisson                                                       SpectrumLike.py:491
         INFO      - background: poisson                                                        SpectrumLike.py:492
../_images/notebooks_synthetic_spectra_32_3.png